

A Framework to Enable Interpretation of the Data

J. Steven Hughes

Principal Computer Scientist

Jet Propulsion Laboratory

ESIP Winter Meeting 2017 Bethesda, Maryland

Use Cases

- What Mars Reconnaissance Orbiter (MRO) High Resolution Imaging Science Experiment (HiRISE) Reduced Data Record (RDR) images have both craters and dunes?
- What coordinate system was used for the HiRISE RDR images?
- An anomalous artifact was found in an Engineering Data Record (EDR) image of Cydonia Mesa collected by HiRISE.
 For analysis the following are requested:
 - the calibration files used to calibrate this image
 - published instrument design documents.

Terms, Definitions, and Relationships

 What Mars Reconnaissance Orbiter (MRO) High Resolution Imaging Science Experiment (HiRISE) Reduced Data Record (RDR) images have both craters and dunes?

The Raw Data

- What coordinate system was used for the HiRISE RDR images?
- An anomalous artifact was found in an Engineering Data Record (EDR) image of Cydonia Mesa collected by HiRISE. For analysis the following are requested:
 - the calibration files used to calibrate this image
 - published instrument design documents.

Terms, Definitions, and Relationships

What are these things?

- What Mars Reconnaissance Orbiter (MRO) High Resolution Imaging Science Experiment (HiRISE) Reduced Data Record (RDR) images have both craters and dunes?
- What coordinate system was used for the HiRISE RDR images?
- An anomalous artifact was found in an Engineering Data Record (EDR) image of Cydonia Mesa collected by HiRISE. For analysis the following are requested:
 - the calibration files used to calibrate this image
 - published instrument design documents.

Terms, Definitions, and Relationships

How are these things related to the data?

- What Mars Reconnaissance Orbiter (MRQ) High Resolution Imaging
 Science Experiment (HiRISE) Reduced Data Record (RDR) images have
 both craters and dunes?
- What coordinate system was used for the HiRISE RDR images?
- An anomalous artifact was found in an Engineering Data Record (EDR)
 image of Cydonia Mesa collected by HiRISE. For analysis the following
 are requested:
 - the calibration files used to calibrate this image
 - published instrument design documents.

identified in

The Information Model (IM)

- The Information Model provides the information requirements for the system
 - Defines the terms in the community and their relationships
 - Improves consistency and interoperability and reduces ambiguity
- Establishes an overarching federated governance model for the metadata
 - Provides common, discipline, and local governance
 - Localizes changes and allows extensions as the community evolves
 - Allows for model independence
- Establishes the "corner-stone" of the "information model-driven" driven design paradigm
 - Allows the system to be configured by and to respond to the information model (information requirements)
 - Enables agile development
 - Handles diversity
 - Accommodates new instruments, observation types, data, ...
 - Reduce the impact of changes on the system

Components of the Information Model

The Input to the Model Consists of Two Parts

- Common Foundational Principles
 - Open Archival Information System Reference Model (OAIS-RM)
 - Data Dictionary Reference Model
 - Federated Reference Model

- Community-Specific Input
 - Information Requirements
 - Domain Knowledge

Open Information Archive System (OAIS) Reference Model

Information Object Model¹

TAGGED DIGITAL OBJECT

 digital object: An object which is real data — for example, a binary image of a redwood tree.

TAGGED NON-DIGITAL OBJECT

 physical object: An object which is physical or tangible – for example the planet Saturn and the Venus Express magnetometer.

TAGGED NON-DIGITAL OBJECT

conceptual object: An object which is intangible – for example the Cassini mission and NASA's strategic plan for solar system exploration.

Data Management¹

Description Object Management

Information Object Model¹

 digital object: An object which is real data — for example, a binary image of a redwood tree.

physical object: An object which is physical or tangible – for example the planet Saturn and the Venus Express magnetometer.

conceptual object: An object which is intangible – for example the Cassini mission and NASA's strategic plan for solar system exploration.

Data Object Management

Description Object Management

Information Object Model¹

DESCRIPTION OBJECT

DIGITAL OBJECT

DIGITAL OBJECT

Data Object Managemen

digital object: An object which is real data — for example, a binary image of a redwood tree.

TAGGED NON-DIGITAL OBJECT

 physical object: An object which is physical or tangible – for example the planet Saturn and the Venus Express magnetometer.

TAGGED NON-DIGITAL OBJECT

conceptual object: An object which is intangible – for example the Cassini mission and NASA's strategic plan for solar system exploration.

Information Categories¹

Identification

 Identification information provides a unique and immutable identifier for any information object that is to be discovered and accessed.

Representation/Format

 Representation information allows a data object to be interpreted. This includes describing the data format.

Integrity (Fixity)

Integrity information ensures the information object has not been unintentionally altered.

Provenance

 Provence Information provides the history of the data and is essential for authenticity. It must include the provider.

Context

 Context information provides additional information that describes the environment in which the data object was created. For example, context information may describe instruments or light sources.

Reference

 Reference information allows the information objects to be referenced. Identification information is a subset of Reference Information.

Access Rights

 Access Rights information identifies the access restrictions pertaining to the data, including the legal framework, licensing terms, and access control; provider provided access and distribution conditions, and specifications for rights enforcement measures. Pasadena, California

Data Dictionary Reference Model²

Registry Reference Model

- ebXML (Electronic Business XML) Standardizes the secure exchange of data
- Defines key properties of a federated registry
 - registry database schema
 - registry object (generic)
 - Extensions: products, granules, etc
 - First class objects
 - digital, physical, and conceptual
 - core attributes
 - identification (e.g. <logical_identifier>)
 - versioning (e.g. <version_identifier>)
 - common registry services
 - tracking/locate/retrieval

Information Requirements

 The community's Requirements and Policies set the foundation for the *information requirements*.

- I. The System will provide expertise to guide and assist missions, programs, and individuals to organize and document digital data supporting the institutions goals in science exploration.
 - 1.4 Archiving Standards: The system will have archiving standards for science data
 - 1.4.1 The system will define a standard for organizing, formatting, and documenting science data
 - 1.4.2 The system will maintain a **dictionary of terms, values, and relationships** for standardized description of science data
 - 1.4.3 The system will define a **standard grammar** for describing science data
 - 1.4.4 The system will **establish minimum content requirements** for a data set (primary and ancillary data)
 - 1.4.5 The system will, for each mission or other major data provider, produce a list of the **minimum components required** for archival data
 - 1.4.6 The system will develop, publish and implement a process for managing changes to the archive standards
 - 1.4.7 The system will keep **abreast of new developments** in archiving standards

Domain Knowledge

- The experiential (first hand) information about things of interest known by experts in the domain.
- Information about the "things" that should be collected and associated with the data to make and keep it useful.
 - The data and their structures (representation information)
 - The context within which the data was used and collected
 - Investigations/Missions/Campaigns
 - Observing Systems/Instruments
 - Personnel
 - Data collection targets of interest

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

Domain Knowledge

Information Model Management

The Information Model Database

- All "things of interest" are defined in an object modeling tool.
 - All objects and their attributes and relationships.
 - Typically an ontology modeling tool is used
 - Necessary but not necessarily sufficient
- A master database is created by merging the object models and the data dictionary.
- The contents of the master database is filtered and written to system files in various formats.
 - Used by the data providers, registry, harvester, search engine, validator and other system tools and services.

Data Dictionary Schema

Data Element

- Name
- Submitter, Steward
- Definition
- Namespace
- Source of definition
- Change log
- Version
- Concept
- Alternate Names
- Definition in different natural languages
- Classification
- Unit of measurement
- Effective Dates

Value Domain

- Permissible Value
- Value Meaning
- Submitter, Steward
- Definition
- Cardinality
- Source of definition
- Change log
- Version
- Concept
- Character Set
- Representation
- Minimum and Maximum Value
- Minimum and Maximum Length
- Alternate encodings
- Effective Dates

Information Model Output

XML Schema and Schematron Files

```
<xs:complexType name="Array">
  <xs:annotation>
   <xs:documentation>The Array class defines a homogeneous N-dimensional array of scalars. . . .
  </xs:annotation>
  <xs:complexContent>
   <xs:extension base="pds:Byte Stream">
    <xs:sequence>
     <xs:element name="offset" type="pds:offset" minOccurs="I" maxOccurs="I"> </xs:element>
     <xs:element name="axes" type="pds:axes" minOccurs="I" maxOccurs="I"> </xs:element>
     <xs:element name="axis index order" type="pds:axis index order" minOccurs="I" ...</pre>
     <xs:element name="description" type="pds:description" minOccurs="0" maxOccurs="1"> ...
     <xs:element name="Element Array" type="pds:Element Array" minOccurs="I" ...</pre>
     <xs:element name="Axis_Array" type="pds:Axis Array" minOccurs="I" ...</pre>
 <sch:pattern>
    <sch:rule context="pds:Array/pds:axis index order">
     <sch:assert test=". = ('Last Index Fastest')">
      The attribute pds:axis index order must be equal to the value 'Last Index Fastest'.</sch:assert>
```


Product Label Template

```
Identification Area
   Logical_Identifier
   Version Id
Observation Area
   Time Coordinates
                                   Discipline_Area
   Primary_Result_Summary
                                   Mission Area
   Investigation Area
   Observing System
   Target_Identification
Reference List
   Internal Reference
   External Reference
File Area Observational
   File
       Header
       Array 2d Image
```


The Framework at Work

- What Mars Reconnaissance Orbiter (MRO) High Resolution Imaging Science Experiment (HiRISE) Reduced Data Record (RDR) images have both craters and dunes?
 - Spacecraft, instruments, digital images, documentation, and calibration files are all defined in the information model.
 - Labeled objects are created, ingested, and related in the registry.
 - All registered objects are considered first-class.
 - The Imaging Atlas (catalog) uses semantics from the information model and harvested metadata from labeled objects to provide field- and facetbased search.
 - Image content annotations were generated using a visual salience landmark detector plus a deep learning neural network classifier.
 - Enables Image Atlas to provide content-based search for HiRISE RDR images of Mars

Semantics at Work

- What coordinate system was used for the HiRISE RDR images?
 - The coordinate system used is planetocentric latitude and east positive longitude direction
 - Coordinate systems are defined as a class in a discipline level cartography model
- An anomalous artifact was found in an Engineering Data Record (EDR) image of Cydonia Mesa collected by HiRISE. For analysis the following are requested:
 - the calibration files used to calibrate this image
 - published instrument design documents.
 - Documents are either referenced as registered objects or via bibliographic citations / DOIs.
 - Features are classified and defined in a feature catalog.

Thank You!

PDS4 Documents

https://pds.jpl.nasa.gov/pds4/doc/index.shtml

National Aeronautics and Space Administration

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

Backup